		STUDY MODULE D	ESCRIPTION FORM			
Name of the module/subject Strength of Materials			Code 1010101121010100028			
Field of		Engineering Eirst-cycle	Profile of study (general academic, practical) (brak)	Year /Semester		
Sustainable Building Engineering First-cycle Elective path/specialty			Subject offered in:	Course (compulsory, elective)		
Cycle of	f studv:	-	English Form of study (full-time,part-time)	obligatory		
- ,		cle studies				
N (1	-		full-time			
No. of h		s: 30 Laboratory: 15	Project/seminars:	No. of credits 8		
	010000	program (Basic, major, other)	(university-wide, from another fi			
		(brak)		(brak)		
Educati	on areas and fields of sci	ence and art		ECTS distribution (number and %)		
techr	nical sciences			8 100%		
Technical sciences				8 100%		
Resp	onsible for subj	ect / lecturer:	Responsible for subject	ct / lecturer:		
dr h	ab. inż. Zbigniew Poz	orski	dr hab. inż. Zbigniew Pozoi	rski		
	ail: zbigniew.pozorski@ 616652096	2put.poznan.pl	email: zbigniew.pozorski@put.poznan.pl			
Fac	ulty of Civil and Enviro	onmental Engineering	tel. 616652096 Faculty of Civil and Environmental Engineering			
ul. F	Piotrowo 5 60-965 Poz	nań	ul. Piotrowo 5 60-965 Pozn	ań		
Prere	quisites in term	is of knowledge, skills and	d social competencies:			
1	Knowledge	Mathematics: algebra (including matrix calculus), mathematical analysis (including of and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics at level 5 of KRK.				
		Theoretical mechanics: knowledge of the equilibrium equations and internal forces in rod elements of a structure - level 6 of KRK.				
2	Skills	Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK.				
		Physics: ability to apply the principles of Newton - level 5 of KRK.				
		Theoretical mechanics: the ability to use the balance equations to determine the reactions and internal forces in statically determined bar systems - level 6 of KRK.				
3	Social	Students can work in groups.				
	competencies	The student follows the rules of e	ethics.			
		jectives of the course: s and competence in solving proble	ems of stress, strain and displa	cement in the rod elements of		
	ucture and mechanics	1 81				
Ka av		mes and reference to the	educational results for	a field of study		
	vledge:		inter of non-one station desi			
materia	al strength (stress, stra	 the strength of materials and princ ain, displacement, axis of gravity a s and strength hypotheses for linea 	nd main cross-section, isotropy	, homogeneity), knows physical		
	lent knows the princip ture) - [KSB_W06]	les of structural theory and analysi	s of rod systems in the field of	statics and stability (obtained at		
Skills						
interna	I forces, determine be	static analysis of bar structures: ca am displacements using differentia d on exercises and projects) - [KS	al equations, determine the crit			
buildin	g materials (obtained	laboratory experiments leading to during laboratory classes) - [KCB		erial and strength parameters of		
Socia	al competencies:	•				

Student is responsible for the reliability of the obtained results of their work and their interpretation - [KSB_K02]
 Student has the ability to critically evaluate the results of their own work - [KSB_K08]

Assessment	methods of study outcomes
------------	---------------------------

Description of the methods to check the effects

Evaluation of lectures

Written exam (duration: 120 minutes) on the date specified at the beginning of the semester (effect KSB_W04, KSB_W06, KSB_U06, KSB_U08, KSB_K02, KSB_K08). The basis for passing is to obtain a sufficient minimum score (3.0). Rating scale: very good (5.0), good plus (4.5), good (4.0), satisfactory plus (3.5), satisfactory (3.0), insufficient (2.0)

Evaluation of exercises

Auditorium classes are counted on the basis of positive grades (at least 3.0) from tests (duration of each 90 minutes), dates given at the beginning of the semester (KSB_W04, KSB_W06, KSB_U06, KSB_U08, KSB_K02, KSB_K08). Rating scale: very good (5.0), good plus (4.5), good (4.0), satisfactory plus (3.5), satisfactory (3.0), insufficient (2.0)

Project evaluation

Design exercises are counted on the basis of positive grades (at least 3.0) from project tasks. Design exercises are subject to individual defense (oral or written form) (effect KSB_W04, KSB_W06, KSB_U06, KSB_U08, KSB_K02, KSB_K08). Rating scale: very good (5.0), good plus (4.5), good (4.0), satisfactory plus (3.5), satisfactory (3.0), insufficient (2.0)

Laboratory assessment

Laboratory exercises are counted on the basis of positive grades (at least 3.0) from laboratory exercises reports and minimum 1 colloquium. Reports are subject to defense by the team performing the exercise (oral or written form) (effect KSB_W04, KSB_W06, KSB_U06, KSB_U06, KSB_U08, KSB_K02, KSB_K08).

Rating scale: very good (5.0), good plus (4.5), good (4.0), satisfactory plus (3.5), satisfactory (3.0), insufficient (2.0)

Course description

Lectures

- 1. Geometrical parameters of figures
- 2. Theory of experimental research methods
- 3. Normal force, bending moment (bending straight)
- 4. Shear force
- 5. Principal stresses
- 6. Skew bending
- 7. Eccentric action of normal force
- 8. Normal stresses under the foundation
- 9. Torsion of circular and thin-walled closed sections
- 10. Torsion of rods with a thin-walled open section
- 11. Determination of beams displacements
- 12. Stability of rod systems
- 13. Strain state, physical (constitutive) relations
- 14. Strength hypotheses
- 15. Stress state at a point

Exercises

- 1. Determination of internal forces in systems subjected to non-uniform loading
- 2. Determination of geometric parameters of figures
- 3. Determination of geometrical parameters of figures, analysis of axially loaded bars
- 4. Bending moment action. Designing of cross-sections in bending, stresses in a rectangular cross-section
- 5. Shear force in the I-section and box section
- 6. Colloquium
- 7. Skew bending
- 8. Eccentric action of normal force
- 9. Cantilever beam in a complex load condition
- 10. Determination of normal stresses under foundations
- 11. Determination of beam displacements

12. Determination of the critical force of compressed rods

- 13. Stress analysis at a point
- 14. Colloquium
- 15. Retrieval test

Projects

- 1. Explanation of organizational principles, discussion of subject matter, project commissioning
- 2. Project No. 1 determination of internal forces in beams
- 3. Project No. 2 determination of internal forces in frames
- 4. Project No. 3 ? determination of geometrical parameters of a symmetrical cross-section.
- 5. Defense of projects No. 1 and 2.
- 6. Project No. 4 ? determination of geometrical parameters of an asymmetrical cross-section
- 7. Defense of projects no. 3 and 4
- 8. Project No. 5 determination of stresses in beams
- 9. Defense of project No. 5
- 10. Project No. 6 skew bending of a beam
- 11. Project No. 7 eccentric action of normal force
- 12. Project No. 8 beams subjected to complex loads (also torsion)
- 13. Defense of projects no. 6, 7, 8
- 14. Project No. 9 determining the critical force for a compressed rod
- 15. Submission of project No. 9.

Laboratories

- 1. Providing the rules for the implementation of laboratory exercises, providing health and safety rules
- 2. Exercise No. 1. Metals tensile test
- 3. Exercise No. 2. Analysis of a flat truss loaded with concentrated force
- 4. Exercise No. 3. Beam analysis simple bending
- 5. Exercise No. 4. Torsion of a rod with a circular cross-section determining of the shear modulus Exercise No. 5. Skew bending of a rod
- 6. Photoelasticity. Determination of the photoelasic constant.
- 7. Determination of critical load
- 8. Test

METHODS OF EDUCATION

Information lecture Practice method

Project method

Laboratory method

Basic bibliography:

1. S. Timoshenko, Strength of materials, P. 1, Elementary theory and problems, Van Nostrand Reinhold Company 1970.

2. R.D. Snyder, E.F. Byars, Engineering mechanics: statics and strength of materials, McGraw Hill Book Company, cop. 1973.

Additional bibliography:

1. G.M. Seed, Strength of materials: an undergraduate text, Saxe-Coburg Publications, 2000

2. B. Skalmierski, Mechanics and strength of materials, PWN-Polish Scientific Publishers ; Elsevier Scientific Publishing Company, 1979.

3. B. Turoń, G. Piątkowski, Strength of materials: internal forces in statically determinate structures ? examples for beams, Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza, 2015.

Result of average student's workload

Activity	
/	

Total workload Contact hours	210	8
Source of workload	hours	ECTS
Student's wo	rkload	
12. Participation in the final exam (contact hours)	3	
11. Exercises before the final exam (self-study)	12	
10. Exercises before projects defense (self-study)	10	
9. Exercises before classes tests (self-study)	15	
8. Participation in the consultations (contact hours)	5	
7. Completion (at home) project exercises (self-study, practical)	30	
6. Reports from laboratory experiments (self-study)	8	
5. Preparations for laboratory classes (self-study)	7	
4. Participation in the project classes (contact hours, practical)		30
3. Participation in the laboratory classes (contact hours, practical)	15	
2. Participation in the classes (contact hours)	30	
 Participation in the lectures (contact hours) 	45	